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Abstract. We present a theory where the statistical mechanics for dilute ideal gases can be
derived from the random matrix approach. We show the connection of this approach with the
Srednicki approach which connects Berry conjecture with statistical mechanics. We further
establish a link between Berry conjecture and random matrix theory. In the course of arguing
for these connections, we also observe sum rules associated with the outstanding counting
problem in the theory of Braid groups. We believe that these arguments, developed for a special
example connecting the properties of eigenfunctions and random matrices to the second law of
thermodynamics, will eventually prove to be more general.

1. Introduction

We begin with a brief overview of various different links that have been discovered in the last
few decades between classically chaotic systems and their quantal counterparts. Any study
motivated to bring about this connection is what we understand here by ‘quantum chaos’
[1, 2]. An overwhelming number of numerical experiments on spectral statistics [3, 4] and
their corresponding semiclassical analysis [5, 6] suggest that the universal features observed
in chaotic quantum systems can be modelled in terms of random matrix theory (RMT).
Apart from energy spectra, it has been found that the conjecture [7] where an eigenstate of
a chaotic quantum system is represented as a Gaussian random superposition of plane waves
entails results which are found in agreement with numerical studies [8, 4]. We believe that
an important step has been in establishing the result that this conjecture leads to momentum
distribution of ideal gases, thus bringing out statistical mechanics [9]. However, in order
to bring out the puzzling results in two-dimensional statistical mechanics, it is necessary
that the choice of the correlations between amplitudes of the eigenstates is specified. Thus,
in this pursuit, we are led to RMT where one can systematically choose the ensemble.
Recently, it has been shown how one can go from RMT to statistical mechanics [10]—a
work that has brought together two important statistical theories which have been, hitherto,
considered quite apart.

Throughout this paper, we will be concentrating on two dimensions as that is the most
difficult case in statistical mechanics [11–13]. In section 2, we give a brief discussion of
the choice of random matrix ensemble when time-reversal and parity are broken. This is
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fundamental in dealing successfully with the problem of momentum distribution function
and virial coefficients in section 3. The fact that quantum mechanics can be done on real
field if the antiunitary symmetries are well specified [15], and, the classification theorem of
associative division algebra [17] leads to three basic ensembles in RMT [16]. Incorporating
the violation of parity is an important step. In section 4, we unify the different streams of
thought from quantum chaos, RMT, and statistical mechanics by discussing entropy which
is fundamental to all the three. We would like to mention that a recent work [18] is an
interesting companion of this paper. We conclude the paper with a summary.

Before we begin, let us mention that our discussion here is restricted (in the present
form) to random matrix ensembles that are invariant under a canonical group. Indeed, it
is not necessary at all that various statistical properties of the spectrum and eigenfunctions
of chaotic quantum systems follow the canonical RMT. It is known that, upon taking
localization effects into account, the eigenfunction statistics is considerably modified [19].
In a given system of many identical particles, it may become necessary to consider in the
ansatz for eigen- (or wave)-function these non-universal features.

2. Random matrix ensemble in two dimensions

Usually in discussions on RMT, the space dimensionality of the physical system plays
no explicit role. Due to the subtleties arising from the fact that we are working in two
dimensions, we present here a comparative discussion about the fundamental symmetries
in two and three (or greater) space dimensions which decisively restrict the possibilities of
the random matrix ensemble. Let us emphasize that this does not mean that our discussion
becomes incompatible with the observation that spectral statistics and eigenfunction statistics
is found in agreement with RMT. The discussion below is only meant for a many-body
system of identical particles.

Denoting the time reversal operator byT̂ , the position operator bŷq, the momentum
operator byp̂, and the spin angular momentum byσ̂ satisfy

T̂ q̂T̂ −1 = q̂
T̂ p̂T̂ −1 = −p̂
T̂ σ̂ T̂ −1 = −σ̂ .

(1)

In order to preserve the commutator betweenq̂ and p̂, we see through

T̂ iT̂ −1 = −i (2)

(i is the square root of−1) that T̂ is antilinear. Moreover, since

T̂ T̂ † = 1 (3)

we say thatT̂ is antiunitary. This then leads to

T̂ 2 = ±1 (4)

giving us the possibilities—symmetric and antisymmetric states of a physical system which
are consistent with even and half-odd integral spin respectively yielding the Bose–Einstein
and Fermi–Dirac distributions. On very general grounds thus, if a system respects time
reversal symmetry, the Hamiltonian can be represented in terms of real or quaternion real
elements depending on spin and rotational symmetry. If, however, time reversal is broken,
the elements are complex, and the canonical group that preserves the Hamiltonian is unitary.
Therefore, in three (or greater) space dimensions, a random matrix ensemble can be chosen
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appropriately satisfying the invariance under an orthogonal, a unitary or a symplectic group,
and no more [17].

It is important to note now that the fact that we have only symmetric or antisymmetric
states here shows that the space dimensions must be three or greater since in two
dimensions, there is an extra phase factor under an exchange of two coordinates which
leads to a fractional angular momentum leading to fractional statistics. In the gauge
where the two particles (in case of a discussion of two particles one can just consider
the centre of mass as one particle) are free, the boundary conditions get twisted. For
a free charged particle of chargeQ in a magnetic flux,8, the boundary condition is
9(ϕ) ∼ exp[i(integer−Q8/2π)ϕ]; we see that the angular momentum becomes fractional
[21, 13]. This leads to a distinction between clockwise and anticlockwise rotations, which
leads us to the notion of chirality and the associated breakdown of parity. In general, in
two space dimensions, parity and time reversal symmetries are broken. Any choice of a
random matrix ensemble must be consistent with this.

Since time reversal is broken, it follows from the foregoing discussion that the
Hamiltonian matrix of the system will be complex, invariant under a unitary group.
Breakdown of parity is new, however, the answer is in the boundary condition. Thus,
we are led to a chiral unitary ensemble.

In our present context of a many-body system whose eigenstates we cannot know exactly
due to practical limitations (even if it is possible in some cases, we deal with the situation
where a statistical study is the viable option), following Srednicki, we write a random pure
state as a superposition of some basis states with amplitudes which are random. By the
randomness of the amplitudes, we mean that they satisfy some correlation functions which
we will write in the next section. The randomness in the amplitudes makes the pure states
of the system also random. We have assumed that the system is isolated.

The randomness in the pure state can also be interpreted [22] by weighting the
eigenvectors by a measure invariant under unitary transformations,UN . By considering
the unit complexN -sphere as a homogeneous space ofUN , then again asUN itself but
organized into cosets, the measure is seen to be the Haar measure onUN , thus unique. It
is from this interpretation that we will discuss the entropy of the subsystem where we will
note a connection between randomness in pure state and RMT, however, in that case it will
be applied to the density operator of the subsystem which resides in the isolated system
with a Hilbert space of lesser dimensionality.

3. Momentum distribution

Let us consider a system ofN hard spheres (‘discs’ in two dimensions), each of radius
a, enclosed in a box of edge lengthL + 2a. Centres of two hard spheresxi andxj are
such that|xi − xj | > 2a. The canonical pair of coordinates describing these particles
are (X,P ) whereX = (x1,x2, . . . ,xN),P = (p1,p2, . . . ,pN). Energy eigenfunctions,
ψα(X) corresponding to eigenvalueEα vanish on the boundary of the enclosure. A typical
eigenfunction is irregular, with a Gaussian amplitude distribution and the spatial correlation
function of the same is consistent with the conjecture of Berry which allows us to represent
this eigenfunction as a superposition, following Srednicki [9]:

ψα(X) = Nα
∫

ddNP Aα(P )δ(P
2− 2mEα)e

i
h̄
X·P (5)
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with Nα given by the normalization constant, andAα ’s satisfying the two-point correlation
function

〈A∗α(P )Aγ (P ′)〉ME = δαγ δ
dN(P − P ′)
δ(P 2− P ′2) (6)

where d denotes the number of coordinate-space dimensions. The average in (6) is a
matrix-ensemble (ME) average which originates from the fact that the Hamiltonian,H ,
of the system belongs to an ensemble of matrices satisfying associative division algebra
[16, 17] in consistency with quantum mechanics. The eigenstate ensemble (EE) used in [9]
is nothing but a consequence of underlying matrix ensemble in RMT, the eigenfunctions
then satisfy all the properties numerically observed and analytically represented in (5), (6)
and [20]. The correlation functions (6) decide whether time-reversal symmetry is preserved
(A∗α(P ) = Aα(−P )) or broken(A∗α(P ) 6= Aα(−P )), accordingly the corresponding matrix
ensemble belongs to orthogonal ensemble (OE) or unitary ensemble (UE) respectively.
As noted in [9], the higher-order even-point correlation functions factorize and the odd
ones vanish. A very important aspect of the ansatz (5), (6) is that the Wigner function
corresponding toψα(X) is microcanonical, or, is proportional toδ(H − Eα) which, in a
sense, incorporates ergodicity. We note here that, starting from an ansatz very similar to
those above, it is possible to obtain the quantum transport equation [23] where it is important
to relate a given quantum state with the admissible energy surface in phase space; thus the
above ansatz is in conceptual agreement with the ergodic aspect of a many-body system.
Moreover, this choice fixes the Thomas–Fermi density of states naturally. It now becomes
important to emphasize that we must restrict ourselves to dilute gas of hard spheres and
also assume that the size of sphere is much less than the thermal de Broglie wavelength.
Thus, the ansatz establishes, in fact, a link between RMT and statistical mechanics. We
now incorporate the case of two dimensions which otherwise presents enormous difficulties.

In two dimensions, the solutions of the Schrödinger equation,ψ(x1,x2, . . . ,xN), under
an exchange of two coordinates of particles satisfies

ψ(x1, . . . ,xi , . . . ,xj , . . . ,xN) = eiπνψ(x1, . . . ,xj , . . . ,xi , . . . ,xN) (7)

whereν is arbitrary and defines statistics. Forν = 0 andν = 1, with (6), one gets the Bose–
Einstein and Fermi–Dirac distributions. This non-trivial phase and the resulting boundary
condition arises from the fact that the effective configuration space,M2

N has a fundamental
group,π1(M

2
N) = BN [24], the Braid group ofN objects which is an infinite, non-Abelian

group. BN is generated by(N − 1) elementary movesσ1, . . . , σN−1 satisfying the Artin
relations,

σiσi+1σi = σi+1σiσi+1 (i = 1, 2, . . . , N − 2)

σjσi = σiσi |i − j | > 2
(8)

the inverse ofσi is σ−1
i , the identity is denoted byI , and the centre ofBn is generated

by (σ1σ2 · · · σN−1)
N . The multivaluedness of the eigenfunction originates from the phase

change in effecting an interchange between two coordinatesx
(1)
i andx(2)i (where superscripts

refer to components) which can be expressed as

V = exp

(
iν
∑
i<j

φij

)

φij = tan−1

(
x
(2)
i − x(2)j

x
(1)
i − x(1)j

)
.

(9)
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The description adopted by us here is referred to as the anyon gauge. It is important
to realize that a set of coordinate configuration can be reached starting from some initial
coordinates ofN particles in an infinite way, each possibility manifested by an action of an
elementβ ∈ BN .

The connection between initial and final sequences is given by (7), via the character
χ(β) of the specific element. Thus, to everyβ ∈ BN , we can associate the affected partial
amplitudeψα(β : x) [25]. With one-dimensional unitary representation of the braid group,
the rudiments of quantum mechanics allow us to write

8α(X) =
∑
β∈Bn

χ(β)ψα(β : X) (10)

whereψα(β : X) is the probability amplitude associated in changing a configurationX to
(β : X)—a configuration after the action ofβ on X. The wavefunction8α(X) is to be
understood as appropriately normalized. The ansatz forVψα(β : X) is now

Vψα(β : X) = Nα
∫

d2NP Aα(β : P )δ(P 2− 2mEα)e
i
h̄
X·P (11)

with Aα(β : P ) satisfying

〈A∗α(β1 : P1)Aγ (β2 : P2)〉ME = δαγ δ
2N((β1 : P1)− (β2 : P2))

δ(P 2
1 − P 2

2 )
(12)

(β1, β2 ∈ BN), andAα(P ) satisfy the twisted boundary conditions,

Aα(p1, . . . ,pi , . . . ,pj , . . . ,pN) = eiπνAα(p1, . . . ,pj , . . . ,pi , . . . ,pN). (13)

The question now is to specify exactly what the matrix ensemble is in this case? The
form of (12) withAα ’s not restricted to real, takes into account the T-breaking, and (13)
makes the ensemble handed or chiral as a result of P-breaking. Thus (11)–(13) gives the
complete description and the ME is, in fact, the chiral-Gaussian unitary ensemble (ch-GUE)
[26] as discussed in the previous section from general considerations. It can easily be shown
that the Wigner distribution is

〈ρW
α (X,P )〉ME = n−1

α h
−2Nδ

(
P 2

2m
− Eα

)
nα = 1

N !0(N)Eα

(
mL2Eα

2πh̄2

)N
.

(14)

For the momentum distribution, we need to evaluate the ME average of8̃∗α(P )8̃
∗
γ (P

′′)
with 8̃ ≡ V8α. With the above ansatz and conditions supplementing it, this average is

F(P ) = 〈8̃∗α′(P )8̃∗γ (P ′′)〉ME = h2Nδα′γNα′Nγ
∑
n,m=0

∑
β1(m)

∑
β2(n)

χ∗(β1)χ(β2)δ(P
2− 2mEα′)

×δ2N
D

( m∏
α=0

σ
εβ1
β1(α)

P ′′ −
n∏
α=0

σ
εβ2
β2(α)

P

)∣∣∣∣
P=P ′′

(15)

where

δ2N
D (Q) = h−2N

∫
Domain,D

d2NX exp

(
i

h̄
Q ·X

)
(16)

P is identified withP ′′ after the sum is performed.
With (15), the momentum distribution is given by

F(p1) =
∫

dp2 . . . dpNF(P )∫
dp1 . . . dpNF(P )

(17)
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which formally completes the deduction. However, an exact evaluation of this is very
difficult and the difficulty is due to counting the irreducible words formed by theσ ’s. To
make the precise connection, we derive the result up to O(h̄2/L2), an order that is enough
for second virial coefficient.

In deriving the momentum distribution, we have to consider all the exchanges that lead
to contributions giving second virial coefficient. WithN generators, we have characters eiπν

and e−iπν leading to a combination, cos(Nπν). With one of the momenta fixed in the above
integral, we look for elements ofBN such that two momenta are interchanged restoring all
other momenta to their labellings. All these elements contribute up to O(h̄2/L2). There are
two kinds of terms with anyσM (which denotes the elements ofBN with M generators):

(i) one wherep1 changes;
(ii) one wherep1 does not change.
We first insert a notation which will be used in sequel, namely, the integral,∫

dNp δ(p2− x) := IN(x) = (πx)N/2

0(N/2)x
. (18)

In case (ii), we have typically

δD(p1− p1)δD(p2− p2) . . . δD(pj − pi )δD(pi − pj ) . . . δD(pN − pN). (19)

This leads to the value of the integral,

1

2
I2(N−2)(2mEα − p2

1)

(
L

h

)2(N−1)

RσM (N)χ(σM) (20)

whereRσM denotes the number of elements composed byM generators that contribute to
O(h2/L2), or just an interchange between two momenta but notp1, and,χ(σM) denotes
the corresponding character.

In case (i), we have typically

δD(p2− p1)δD(p1− p2) . . . δD(pN − pN) (21)

which leads to the integral evaluating to

I2(N−2)(2mEα − 2p2
1)

(
L

h

)2(N−1)

QσM (N)χ(σM) (22)

where QσM (N) denotes the number of elements ofBN composed by N generators
contributing to O(h2/L2) that involve an interchange withp1.

For eachσM → χ(σM), we can findσ∗M → χ∗(σM), and(QσM ,RσM ) = (Qσ∗M ,Rσ∗M ).
Thus, for fixedM, case (i) gives(

L

h

)2(N−1)

I2(N−2)(2mEα − 2p2
1)QσM (N)(χ(σM)+ χ∗(σM)) (23)

and case (ii) gives(
L

h

)2(N−1) 1

2
I2(N−2)(2mEα − p2

1)RσM (N)(χ(σM)+ χ∗(σM)). (24)

Because only two momenta are interchanged, the total contribution of elements ofBN
formed byM generators is(
L

h

)2(N−1) ∑
k=−M,−M+2,...,M−2,M

[I2(N−2)(2mEα − p2
1) cos(πkν)R(M)k (N)

+2I2(N−2)(2mEα − 2p2
1) cos(πkν)Q(M)k (N)] (25)
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for

χ(σM) = [e−iMπν, e−i(M−2)πν, . . . ,eiMπν ] = eikπν (26)

and,RσM is justR(M)k (N). If we integrate overp1, we obtain the normalization factor. For
this, we have terms that lead to an exchange as discussed above, and also the operation of
identity of BN where no momenta are changed. To begin with, we have the integration of
the term without identity, and the result is(
L

h

)2(N−1) ∑
k=−M,−M+2,...,M−2,M

[I2(N−1)(2mEα) cos(πkν)R(M)k (N)

+2I2(N−1)(2mEα) cos(πkν)Q(M)k (N)]. (27)

Denoting by PσM (N) the number of elements ofBN composed ofM generators
contributing to O(h0/L0)—the identity, integration overp2 . . .pN gives(

L

h

)2N

I2(N−1)(2mEα − p2
1)PσM (N)χ(σM). (28)

As above, we haveσM andσ∗M , so this integral reduces to(
L

h

)2N ∑
k=−M,−M+2,...,M−2,M

2I2(N−1)(2mEα − p2
1) cos(πkν)PMk (N). (29)

To get the contribution of identity to normalization, we now integrate this overp1 to obtain(
L

h

)2N ∑
k=−M,−M+2,...,M−2,M

2I2N(2mEα) cos(πkν)PMk (N). (30)

For the second virial coefficient, ifM = 2m(m = 0, 1, 2, . . .), the contribution goes to
the term involved in the identity, and, ifM = 2m + 1(m = 0, 1, 2, . . .), the contribution
is O(h2/L2). The sum over elements ofBN can be substituted by a sum overm. All put
together, in the term which gives normalization, we have

O(1) :

(
L

h

)2N ∞∑
m=0

∑
k=−2m,−2m+2,...2m

2I2N(2mEα) cos(πkν)PMk (N) (31)

and

O

(
h2

L2

)
:

(
L

h

)2(N−1) ∞∑
m=0

∑
k=−2m−1,−2m+1,...2m+1

[I2(N−1)(2mEα) cos(πkν)RMk (N)

+I2(N−1)(2mEα) cos(πkν)QMk (N)]. (32)

For the numerator of (19), with one momentump1 fixed and integrating with respect to all
other momenta, we get the following results:

O(1) :

(
L

h

)2N ∞∑
m=0

∑
k=−2m,−2m+2,...2m

2I2(N−1)(2mEα − p2
1) cos(πkν)PMk (N) (33)

and

O

(
h2

L2

)
:

(
L

h

)2(N−1) ∞∑
m=0

∑
k=−2m−1,−2m+1,...2m+1

[I2(N−2)(2mEα − p2
1) cos(πkν)RMk (N)

+2I2(N−2)(2mEα − 2p2
1) cos(πkν)QMk (N)]. (34)
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For largeN ,

I2(N−1)(x) ∼ I2N(x) (35)

asIN(x) is just the volume of anN -dimensional sphere of radiusx. Let us define

A = p2
1

2mkBTα

B = 1

2πmkBTα
.

(36)

With these, the terms for the normalization factor can be rewritten as:

O(1) :

(
L

h

)2N

2I2N(2mEα)
∞∑
m=0

∑
k=−2m,−2m+2,...2m

cos(πkν)PMk (N) (37)

and

O

(
h2

L2

)
:

(
L

h

)2(N−1)

I2N(2mEα)B

×
∞∑
m=0

∑
k=−2m−1,−2m+1,...2m+1

[cos(πkν)RMk (N)+ cos(πkν)QMk (N)]. (38)

Similarly, the terms corresponding to the numerator of (19) can be rewritten as

O(1) :

(
L

h

)2N

2I2N(2mEα)B exp(−A)
∞∑
m=0

∑
k=−2m,−2m+2,...2m

cos(πkν)PMk (N) (39)

and

O

(
h2

L2

)
:

(
L

h

)2(N−1)

I2N(2mEα)B
2 exp(−A)

×
∞∑
m=0

∑
k=−2m−1,−2m+1,...2m+1

[cos(πkν)RMk (N)+ 2 cos(πkν)QMk (N)]. (40)

Equations (41) and (42) combine to give the numerator of (19) which we callF1, and,
equations (39) and (40) combine to give the denominator of (19) which we callF2. Thus
the ratio ofF1 to F2 gives the momentum distribution up to O(h2/L2). Now, after a
straightforward arrangement of all the terms, we get

F(p1) = (2πmkT )−1 exp

(
− p2

1

2mkT

)
×
{

1+
(
h

L

)2 1

2πmkT
(2e−

p2
1

2mkT − 1)G(N, ν)+O

(
h4

L4

)}
(41)

where

G(N, ν) =
∑∞

m=0

∑2m+1
K=−2m−1(even) Q

(m)
K (N) cos(πKν)

1+ 2
∑∞

m=1

∑2m
K=−2m(odd) P

(m)
K (N) cos(πKν)

(42)

Q
(m)
K is the number of elements inBN composed of ‘m’ generators whereby the momentum

p1 is interchanged with another momentum yielding a character exp(iπKν) (or exp(−iπKν)
sinceQ(m)

K (N) = Q
(m)
−K(N)); P

(m)
K (N) is the number of elements inBN contributing to

identity with a character exp(iπKν) (or exp(−iπKν)). Temperature is introduced above
via the ideal gas law,Eα = NkTα. Unfortunately though, this counting problem stands
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open today [27]. It is very important to note that the ansatz (11)–(13) for the special
case whenσ 2

i = 1 for all i whereBN reduces to symmetric group,SN , the well known
Fermi–Dirac and Bose–Einstein distributions follow. In view of evaluating pressure,5 from
(14), denoting the area of the enclosure by A, we get5A/kT = 1− (2A)−1λ2G(N, ν),
with λ2 = h2(2πmkT )−1. We immediately see thatG(N, 0)/(2N) andG(N, 1)/(2N) are
2−3/2 and−2−3/2 respectively yielding the second virial coefficient for the Bose and Fermi
gases [28]. For the fractional case, withν = even number, 2j + δ (‘boson-based anyons’),
comparing our result with [14], we get the sum rule:

N−1G(N, ν) = −1+ 4|δ| − 2δ2 (43)

the right-hand side belongs to [14]. It is important to note that our deduction is non-
perturbative and in principle, we can get expressions for higher-order virial coefficients
also [29]. To understand this, we observe that relation (14) connects two momentum
configurations ofN particles, and not just the momenta of two particles. Thus, it contains
information that can lead to all virial coefficients. For example, for the third virial coefficient,
we need to evaluate contributions toF(p1) when three momenta out ofN are interchanged.
The denominator of (19) contains those interchanges which braid three strands in such a way
that the initial configuration of momenta is preserved whereas the numerator of (19) contains
those which exchange the momentum assignment on all three strands. We have done the
calculation and the third virial coefficient is expressible in terms of the specific counting
problem ofBN . Here, in order to convince the reader, it suffices to make a comparative
discussion with the existing calculation. For this, we write down the total contribution to
the momentum distribution due to a triple interchange emerging from the elements ofBN
formed byM generators,(
L

h̄

)2(N−2) 2M∑
−2M

2

3
I2(N−3)(2mEα − p2

1) cos(πkν)RMk (N)

+2I2(N−3)(2mEα − 3p2
1) cos(πkν)SMk (N) (44)

where SMk (N) (RMk (N)) are the number of elements ofBN that (do not) change the
momentump1. ID(x) denotes the volume of aD-dimensional hyper-sphere of radiusx.
The reason we give this result here is to show that (46) is a Fourier series with harmonic
terms such as cos 2πν, cos 4πν, etc, in agreement with the conjectured form [29]. It is
becoming evident from recent calculations [30] that the third virial coefficient is a series
with terms such as sin2πν, sin4πν, etc. Our formal result is thus in consonance with these
works.

4. Average entropy of a quantum subsystem—averaging over random eigenstates,
and, over random Hamiltonians

In this section, our discussion will not be restricted to two dimensions as we now come to
the thermodynamics of the different mathematical schemes we have been discussing above.
We have seen above that guided by RMT, and extending the treatment in [9], we obtain a
formal expression for the momentum distribution of an ideal anyon gas. In our treatment,
there is no thermal bath, and to see if thermalization actually occurs, we calculate entropy.
We will show that an assumption of ‘an eigenstate picked randomly for an isolated system’
or ‘a system being in a random matrix ensemble’ maximizes entropy in consistency with
the second law of thermodynamics.
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For this purpose, we consider a quantum version of the Ehrenfest urn model [31]. We
are fortunate that a treatment of this problem [22] already exists, applied lately in the context
of black hole evaporation problems [32].

Consider an isolated systemAB with Hilbert space dimensionmn and normalized den-
sity matrix ρ̂ (a pure stateρ̂ = |ψ〉〈ψ | if ρ̂2 = ρ̂) [33, 32]. Now we divide this system
into two subsystems,A andB, of dimensionsm andn respectively. The density matrices
of A andB, respectively,ρ̂A and ρ̂B , are obtained by partial tracing of̂ρ over B andA
respectively. We assume thatA andB are quantally uncorrelated, i.e.ρ̂ = ρ̂A⊗ρ̂B . If |ψ〉 is
chosen at random, what is the joint probability distribution of eigenvalues ofρ̂A? Following
[22], ‘random’ refers to unitarily invariant Haar measure which, in this case, turns out to be
hyper-area of the unit sphereS2mn−1, the factor of 2 coming from the fact that|ψ〉 hasmn
complex entries (or 2mn real entries). The objective is to study the average entropy of A,
〈SA〉(= − tr ρ̂A log ρ̂A) over the probability distribution of eigenvalues (which are probabil-
ities) of ρ̂A. The result of this calculation, conjectured in [32] and proved first in [34], is

〈SA〉 =
mn∑

k=n+1

1

k
− m− 1

2n
(m 6 n). (45)

The random pure state can be written (for the system we are considering) as (7), (8) in
three (or greater) space dimensions, or, as (13)–(15) in two dimensions. It is an important
conceptual point to note that these equations are a mathematical representation of choosing
a pure state at random for a specific choice of amplitude,Aα.

If one calculates the average of trace ofρ̂A
2, first, over homogeneously distributed

unit vector inmn-dimensional Hilbert space, and then, over random Hamiltonians, the
two answers are only different by one bit [35]. The values are almost the same as one
corresponding to the answer when the entropy will be maximal, i.e. when each probability
is 1/m and hence the entropy is−∑m

i=1
1
m

log 1
m
= logm. This brings us to random matrices

as all that is being done here about averaging over random Hamiltonians is what is done in
RMT. Thus the average entropy of a subsystem follows from the random matrix hypothesis
aboutAB—the statement becomes exact whenm � n. Indeed, the connection of RMT
and statistical mechanics is when the size of the system is large where it means then that
the number of particles is large to be consistent with thermodynamic limit.

In fact, it has been shown [36] that if the pure states ofAB are random, the probability
distribution of eigenvalues of̂ρA is just the one-point correlation function corresponding
to the (generalized) Laguerre unitary ensemble of random matrices [38]. Since the one-
point correlation function (average level density) is the same for orthogonal, unitary, and
symplectic ensembles [37], the answer for the average entropy will remain the same. Let us
remember that the average level density is, in principle, a function of the size of the matrices.
The fact that we must discuss entropy in the context of systems in the thermodynamic limit
is what makes the entropy the same for all the ensembles. Since the fluctuations on top
of the average density become significant with decreasing sizes, we expect to observe their
interesting effect on the entropy. We now present results that prove these remarks.

We begin by recalling that the average over all pure states ofAB, in unitary Haar
measure, of the spread of eigenvalues ofρ̂A is [22]

〈σ 2〉 =
〈

1

m

m∑
i=1

(
pi − 1

m

)2 〉
= 1−m−2

mn+ 1
. (46)

Clearly, the casen = 1 corresponds to the situation when̂ρA is also pure, then we have

〈σ 2
max〉 =

1−m−2

m+ 1
(47)
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the ratio of 〈σ 2〉 to 〈σ 2
max〉 gives the measure of ‘purity’ of the subsystemA. Since

we have noted above that the same answer can be obtained by averaging over the one-
point correlation function of the Laguerre unitary ensemble of random matrices, we expect
that apart from the leading term which is logm for the entropy as this corresponds to
equipartition, the ‘defect’ term must show the signature of different ensembles. To this end,
we start by writing the entropy,

S = −
∑
i

pi logpi (48)

and Taylor expand eachpi about 1/m. With

pi = 1

m
− qi
m

(49)

we can write

S = logm− 1

m

[
1

1.2

m∑
i=1

q2
i +

1

2.3

m∑
i=1

q3
i + · · ·

]
(50)

which is convergent if|qi | < 1, i.e. if 0< pi <
2
m

. Since〈σ 2〉 is small for largen, most
of the measure will lie withpi < 2

m
. It is plausible thatS = logm—defect, and that the

defect is well approximated by

〈 defect〉 ≡ 1

2m

∑
i

q2
i =

1

2
m2σ 2

= 1

2

m2− 1

mn+ 1
. (51)

We can now find the defect for the case where we integrate over orthogonally invariant
Haar measure [40] and symplectically invariant Haar measure. The difference is that
these correspond to hyper-spheres of dimensions(mn− 1), Smn−1, and(4mn− 1), S4mn−1

respectively. After the same steps, we get〈
σ 2

σ 2
max

〉
=

β

2m+ 1
β

2mn+ 1
(52)

where β is the codimension of level crossing, respectively 1, 2, and 4 for orthogonal,
unitary, and symplectic ensembles of RMT. The entropy is given by

S = logm− (m− 1)

2

β

2m+ 1
β

2mn+ 1
+O(n−2). (53)

This result shows that the entropy is almost maximal forn large enough, and that the finite-
dimensional effects contain, as expected, the dependence on the global symmetries of the
system. We also see that for the purpose of average entropy calculation, chirality does not
play an explicit role. This observation is also intuitively expected from the relation between
thermodynamics and statistical mechanics.

We wish to note that the arguments we have used to reach the second law of
thermodynamics are quantum mechanical. The results of this section show that randomness
in eigenstate, which follows from RMT, encompassing the ergodicity of the classical system,
leads to entropy of a subsystem which is maximal. To notice the differences between the
chaotic quantum systems belonging to different random matrix ensembles, we need to study
the ‘defect’ in entropy as a function of the Hilbert space dimension as given in the final
formula above. We conclude this section with the mention of a recent work where a related
study is carried out on periodically kicked top [18].
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5. Concluding remarks

In this paper we have shown that an ansatz where eigenstates are written as random
superpositions of plane waves (or some basis consistent with the boundary conditions) for
systems whose classical analogues are chaotic is equivalent to a random matrix hypothesis.
In an important work [9], the connection between the ansatz and statistical mechanics
in three dimensions was brought out. Since the group that governs exchange symmetry
in two dimensions is an infinite, non-Abelian one whose special case is the permutation
group (the exchange group in three dimensions), our treatment and results in section 3 are
generalizations of [9]. It was possible for us to do this only because we realized what the
random matrix ensemble should be in two dimensions. This is the reason for section 2 where
a comparative discussion about the relevance of space dimensions is given to the random
matrix ensembles. In consistency with the expectations, the ensemble in two dimensions
is chiral unitary ensemble. It is well known that choosing a specific nature of randomness
(e.g. Gaussian) then gives the average density of states which is not realistic. This can be
treated with the Dyson Brownian motion model [20] where any realistic density of states
can be modelled. An interesting relation between a generalized Brownian motion model and
a semiclassical reasoning of universality has recently been worked out [39] by formulating
a hydrodynamic description.

The fact that both the ideas, one of random pure state of an isolated system, and, that of
this system being governed by a random Hamiltonian, give rise to the distribution functions
and virial coefficients correctly suggest that there may be a connection between the two. In
section 4, we described a way that we see most clearly (as of now) in the context of entropy
of a quantum subsystem. We believe that the arguments developed here provide a common
ground to seemingly different themes, leading to the second law of thermodynamics. In
conclusion, in this paper, we have brought together quantum chaos, RMT, and statistical
mechanics for the special case of ideal gases. A more general conclusion will be highly
desirable.

As shown in section 3, the number of words formed byM generators of the Braid
group satisfy a sum rule which comes from our calculation of the second virial coefficient.
Currently, we are involved in understanding the relevant counting problem explicitly and
hope to give an answer in the future.

Finally, the parameter,ν has an analogous partner in quantum chromodynamics [14]
and we conjecture that the anyon gas discussed here and theνπ -parametrized quantum
chromodynamics belong to the same universality class of chiral unitary ensemble of RMT.
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